Xanthohumol Blocks Proliferation and Migration of Vascular Smooth Muscle Cells in Vitro and Reduces Neointima Formation in Vivo
نویسندگان
چکیده
Xanthohumol (1) is a principal prenylated chalcone found in hops. The aim of this study was to examine its influence on platelet-derived growth factor (PDGF)-BB-triggered vascular smooth muscle cell (VSMC) proliferation and migration in vitro and on experimentally induced neointima formation in vivo. Quantification of resazurin conversion indicated that 1 can inhibit PDGF-BB-induced VSMC proliferation concentration-dependently (IC50 = 3.49 μM). Furthermore, in a wound-healing assay 1 potently suppresses PDGF-BB-induced VSMC migration at 15 μM. Tested in a mouse femoral artery cuff model, 1 significantly reduces neointima formation. Taken together, we show that 1 represses PDGF-BB-induced VSMC proliferation and migration in vitro as well as neointima formation in vivo. This novel activity suggests 1 as an interesting candidate for further studies addressing a possible therapeutic application to counteract vascular proliferative disease.
منابع مشابه
The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملMebendazole Reduces Vascular Smooth Muscle Cell Proliferation and Neointimal Formation Following Vascular Injury in Mice
Mebendazole is an antihelminthic drug that exerts its effects via interference with microtubule function in parasites. To determine the utility of mebendazole as a potential treatment for vascular diseases involving proliferation of vascular smooth muscle cells, the effects of mebendazole on vascular smooth muscle cell proliferation were tested in vitro and in a mouse model of arterial injury. ...
متن کاملThe induction of yes-associated protein expression after arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation.
OBJECTIVE Abnormal proliferation and migration of vascular smooth muscle cells (SMCs) are the key events in the progression of neointima formation in response to vascular injury. The goal of this study is to investigate the functional role of a potent oncogene yes-associated protein (YAP) in SM phenotypic modulation in vitro and in vivo. METHODS AND RESULTS In vitro cell culture and in vivo i...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملTransglutaminase 2 promotes PDGF-mediated activation of PDGFR/Akt1 and β-catenin signaling in vascular smooth muscle cells and supports neointima formation.
BACKGROUND Phenotypic switch of vascular smooth muscle cells (VSMCs) accompanies neointima formation and associates with vascular diseases. Platelet-derived growth factor (PDGF)-induced activation of PDGFR/Akt1 and β-catenin signaling pathways in VSMCs has been implicated in vessel occlusion. Transglutaminase 2 (TG2) regulates these pathways and its levels are increased in the neointima. OBJE...
متن کامل